If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+5x+5=0
a = 0.5; b = 5; c = +5;
Δ = b2-4ac
Δ = 52-4·0.5·5
Δ = 15
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{15}}{2*0.5}=\frac{-5-\sqrt{15}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{15}}{2*0.5}=\frac{-5+\sqrt{15}}{1} $
| y-23=-5 | | 105+(4y-13)=180 | | 6+5x-2÷3=10 | | 0=45+6x | | 10+2q=-5q+3 | | -2.3+x=6.9 | | 4(3x+8)-9=2(6x+-9)+39 | | b+10=52 | | (-)5h^2-5h+60=0 | | 12121221x-3543534345=1234323454+666x | | -6n=50 | | -2(y-3)=+24 | | 2h=-3 | | 4z+9=5z+5 | | -7w-8=3(w+4) | | 4(x+1)=2(18+x) | | 3(4x+1)=6x+3+6x+2 | | -5(u+2)=-8u-13 | | 5.4x+9.5=-x-2 | | -28n-36=9-19n | | 6w=6+w | | 9-2x+7+4x=2(x+8) | | x-6.3=8.61 | | 8-m=-6 | | 1-3+4t=3(3t-9) | | -28-36=9-19n | | 6-m=-6 | | 12x+4=13x-12 | | 9x-3+2x=11x+5 | | 8(x-4)-2=-6(x-7) | | m+5=m+5 | | x^2+2.5x+1.57=0 |